# 48. New Ecotoxicologically and Biogenetically Relevant Terpenes of the Tropical Green Seaweed Caulerpa taxifolia which Is Invading the Mediterranean 

by Antonio Guerriero ${ }^{\text {a }}$ ), Federico Marchetti ${ }^{\text {b }}$, , Michele D'Ambrosio $^{a}$ ), Sonia Senesi ${ }^{\text {b }}$ ), Fernando Dini ${ }^{\text {c }}$ ), and Francesco Pietra $\left.{ }^{4}\right)^{*}$<br>${ }^{\text {a }}$ ) Istituto di Chimica, Università di Trento, 1-38050 Povo-Trento<br>${ }^{\text {b }}$ ) Dipartimento di Biomedicina, Università di Pisa, via S. Zeno 35-39, I-56127 Pisa<br>${ }^{\text {c }}$ ) Dipartimento di Scienze dell'Ambiente e del Territorio, Sezione di Protistologia, Università di Pisa, via Volta 4, I-56126 Pisa

(13.XI.92)


#### Abstract

The tropical green seaweed Caulerpa taxifolia (VaHL) C. Agardh (Caulerpales) which is invading the Mediterranean is shown to contain trace amounts of two further novel terpenes, 7,7-C-didehydro-6-hydroxy-6,7dihydrocaulerpenyne $\quad(=(4 S, 6 S, 1 E)-3-[(Z)$-acetoxymethylidene $]-6$-hydroxy-11-methyl-7-methylidenedodeca-1,10-dien-8-yne-1,4-diyl diacetate; 3a) and taxifolione ( $=6$-methylhept-5-en-3-yn-2-one; 4). The former is the most active of the toxins so far isolated from this seaweed, both as an in vitro inhibitor of the growth of marine bacteria and as a cytotoxic agent toward marine ciliate protists. This suggests a central ecotoxicological role for triacetate 3 a as an adjuvant factor in the invasion of the Mediterranean by this seaweed. Moreover, the almost equally toxic 10,11-epoxycaulerpenyne (2) which is scarcely available from Nature for bioassays can now be obtained by peroxy-acid epoxidation of caulerpenyne (1), along with the 6,7 -epoxycaulerpenynes $\mathbf{6 b}$ and $\mathbf{6 a}$. The latter are very labile, 6a giving triacetate 3a, suggesting epoxides to be late biogenetic intermediates in C. taxifolia.


1. Introduction. - The recent, unprecedented phenomenon of massive invasion of the Mediterranean by a tropical seaweed, which started in front of Monaco and heavily spread to the neighboring areas of Cap Martin and Cap d'Ail and which is already touching distant localities both west up to the Balearic Islands and east up to Boccale/ Livorno, is currently of much concern. The implied seaweed, Caulerpa taxifolia (VAhL) C. Agardh, is one of the few toxic seaweeds') and has stimulated studies from the ecological [3a], natural-product-chemistry [4], and ecotoxicological point of view [5]. These studies showed that in the Mediterranean, C.taxifolia competes with the endemic flora [3b] and contains the toxic [1] sesquiterpene caulerpenyne (1) in impressively large amounts, larger than in Caulerpa species in the tropics, accompanied by other sesqui- and monoterpenes [4]. Moreover, sesquiterpenes and raw juice of this seaweed are powerfully toxic; they inhibit the growth, in vitro, of marine bacteria and are cytotoxic agents toward marine ciliate protists [5]. Of particular concern is 10,11-epoxycaulerpenyne (2) which, in such tests, surpasses all other terpenes so far isolated from C. taxifolia [4] [5]; possibly it may also have mutagenic properties, owing to an oxirane functionality linked in an unusual manner to an enyne grouping.

The observation that, on standing, seawater/EtOH solutions of 10,11 -epoxycaulerpenyne (2) become more active in inhibiting marine ciliates [5] suggests chemical transfor-

[^0]

1


3a


1:1 diastereoisomer mixture

2


4

5a $\mathrm{R}=\mathrm{MeO}, \mathrm{R}^{\prime}=\mathrm{Ph}$
b $\mathrm{R}=\mathrm{Ph}, \mathrm{R}^{\prime}=\mathrm{OMe}$
mations to a more active compound. Moreover, the $\mathrm{C}_{10}$ enyne-aldehyde taxifolial D, that appears as a truncated sesquiterpene [4], might be rationalized to derive biogenetically in C. taxifolia from caulerpenyne through oxiranes. This stimulated us to search for new natural metabolities of this seaweed and to study the epoxidation of caulerpenyne ( $\mathbf{1}$; available in large amounts from C.taxifolia) as a semisynthetic route to both the rare 10,11-epoxycaulerpenyne (2) and the isomeric, unknown 6,7-epoxycaulerpenyne (6) in adequate amounts for biological assays and reactivity studies. It was rewarding to find in C.taxifolia the new, strongly bioactive and biogenetically significant, hydroxylated terpene 3a which was also obtained by epoxidation of caulerpenyne (1). Another, new truncated sesquiterpene of biogenetic significance, $\mathbf{4}$, was also isolated from C.taxifolia.
2. Results and Discussion. - 2.1. New Terpenes of C. taxifolia. As indicated in the Exper. Part, the new hydroxylated sesquiterpene and the new truncated terpene isolated from C.taxifolia of Cap Martin have the structure of 7,7-C-didehydro-6-hydroxy-6,7-dihydrocaulerpenyne (3a) and of taxifolione (4), respectively.

The structure of the volatile taxifolione (4) is supported by the NMR resonances for the enyne portion (Table $l$ and Exper. Part) which are similar to those of the corresponding portion of both caulerpenyne (1) and the $\mathrm{C}_{10}$ terpene taxifolial $D$ [4]. The position of the carbonyl group in 4 is supported by UV spectra and ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$-COSY showing a ${ }^{n} J$ betwecn $\mathrm{C} H_{3}(1)$ and both $\mathrm{C}(2)$ and $\mathrm{C}(3) ;{ }^{n} J\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\right)$ correlations support also the remaining portion (Exper. Part), while $\mathrm{CH}_{3}(7)$ is assigned by a positive NOE with $\mathrm{H}-\mathrm{C}(5)$.

Structure 3a is suggested by the ${ }^{13} \mathrm{C}$-NMR spectra (Table 1 and Exper. Part) which are similar to those of caulerpenyne [4] [6] (1), except for a shielding of $\mathrm{C}(6)$, typical for a CHOH group, and a deshielding of $C-\mathrm{C}(7)$, typical for a $\mathrm{CH}_{2}=\mathrm{C}$ group. This is confirmed by the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra, which show, besides the methylidene protons coupled (small $J$ ) with a methine proton at 4.27 ppm , all other coupling patterns requested for structure 3 a (Exper. Part).

The absolute configuration of triacetate 3a at $\mathrm{C}(6)$ is determined from high-field ${ }^{\text {'H}} \mathrm{H}-\mathrm{NMR}$ examination $\left(\mathrm{CDCl}_{3}\right)$ of the diastereoisomeric 3,3,3-trifluoro-2-methoxy-2phenylpropanoates $\mathrm{CF}_{3} \mathrm{C}(\mathrm{OMe})(\mathrm{Ph}) \mathrm{COOR}^{\prime \prime}, \mathbf{5 a}$ and $\mathbf{5 b}$, prepared by reaction of $\mathbf{3 a}$ with

Table $1 .{ }^{13} \mathrm{C}$-NMR Data for 7,7-C-Didehydro-6-hydroxy-6,7-dihydrocaulerpenyne (3a), Its 6-Epimer 3b, Taxifolione (4), and Compounds $6 \mathbf{a}, \mathbf{b}$ and $\mathbf{8 a}, \mathbf{b}$. In $\mathrm{C}_{6} \mathrm{D}_{6}$, unless otherwise stated.

|  | 3a | 3b | 4) | 6 a | 6b | 8a ${ }^{\text {b }}$ ) | 8b ${ }^{\text {c }}$ ) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C(1) | 137.29 (d) | 137.53 (d) | 32.68 (q) | 137.43 (d) | 137.49 (d) | 137.32 (d) | 137.73 (d) |
| C(2) | 109.86 (d) | 109.67 (d) | 184.71 (s) | 109.52 (d) | 109.56 (d) | 110.12 (d) | 109.93 (d) |
| C(3) | 119.85 (s) | 118.81 (s) | 91.55 (s) | 118.80 (s) | 118.48 (s) | 120.17 (s) | 119.09 (s) |
| C(4) | 67.08 (d) | 67.60 (d) | 89.70 (s) | 67.16 (d) | 67.48 (d) | 67.35 (d) | 68.14 (d) |
| C(5) | 40.71 (t) | 39.95 (t) | 103.48 (d) | 32.54 (t) | 32.54 (t) | 36.78 (t) | 35.92 (t) |
| C(6) | 70.88 (d) | 72.02 (d) | 158.19 (s) | 61.48 (d) | 61.67 (d) | 72.95 (d) | 73.25 (d) |
| $\mathrm{Me}-\mathrm{C}(6)$ |  |  | 21.77 (q) |  |  |  |  |
| C(7) | 135.36 (s) | 135.37 ( $s$ ) | 25.46 (4) | 51.45 (s) | 51.35 (s) | 80.32 ( $s$ ) | $80.38(\mathrm{~s})$ |
| $\mathrm{C}(8)$ | 90.69 (s) | 90.67 (s) |  | 92.66 (s) | ${ }^{\text {d) }}$ | 88.97 ( $s)^{\text {e }}$ ) | $\left.88.76(s)^{e}\right)$ |
| C(9) | 89.87 (s) | 89.51 (s) |  | 80.39 (s) | 80.39 (s) | $\left.86.69(s)^{e}\right)$ | 86.66 (s $s^{\text {e }}$ ) |
| $\mathrm{C}(10)$ | 105.87 (d) | 105.79 (d) |  | 105.02 (d) | 105.03 (d) | 105.00 (d) | 104.89 (d) |
| C(11) | 149.04 (s) | 149.06 (s) |  | 149.69 (s) | 149.58 (s) | 150.61 (s) | 150.65 (s) |
| $\mathrm{C}(12)$ | 24.57 (q) | 24.55 (q) |  | 24.43 ( q ) | 24.41 (q) | 24.47 ( $q$ ) | 24.48 ( $q$ ) |
| $\mathrm{CH}(\mathrm{Ac})=\mathrm{C}(3)$ | 134.39 (d) | 135.15 (d) |  | 134.89 (d) | 135.24 (d) | 134.69 (d) | 136.20 (d) |
| $\mathrm{CH}_{2}=\mathrm{C}(7)$ or $\mathrm{Me}-\mathrm{C}(7)$ | 119.12 (t) | 119.50 (t) |  | 19.20 (q) | 19.26 (q) | 22.16 (q) | 22.78 (q) |
| $\mathrm{Me}-\mathrm{C}(11)$ | 21.04 (q) | 21.04 (q) |  | 20.91 (q) | 20.91 (q) | 21.12 (q) | $21.11(q)$ |
| $\mathrm{Me} \mathrm{CO}_{2} \mathrm{C}(1)$ | $19.82(q)^{\text {e }}$ ) | $19.88(q)^{\text {e }}$ ) |  | $19.81(q)^{e}$ ) | $\left.19.82(q)^{e}\right)$ | $19.84(4)^{\text {f }}$ ) | $19.92(q)^{\text {f }}$ ) |
| $\mathrm{MeCO} 2 \mathrm{C}(1)$ | $166.62(s)^{\text {r }}$ ) | $166.78(s)^{\text {f }}$ ) |  | $166.34(s)^{\text {f }}$ ) | $166.45(s)^{\text {f }}$ ) | $167.23(s)^{\text {E }}$ ) | $167.30(s)^{\text {g }}$ ) |
| $\mathrm{MeCO} 2 \mathrm{C}(4)$ | 20.42 (q) | 20.50 (q) |  | 20.33 (q) | 20.37 (q) | 20.45 (q) | 20.55 (q) |
| $\mathrm{MeCO} \mathrm{O}_{2} \mathrm{C}(4)$ | 169.91 (s) | 169.25 (s) |  | 169.06 (s) | 169.00 (s) | 169.93 (s) | 169.26 (s) |
| $\mathrm{Me} \mathrm{CO}_{2} \mathrm{CH}=\mathrm{C}(3)$ | 19.95 (q) ${ }^{\text {e }}$ ) | $19.94(q)^{\text {e }}$ ) |  | $19.92(q)^{\text {e }}$ ) | $19.91(q)^{\text {e }}$ ) | $\left.19.94(q)^{f}\right)$ | $19.97(q)^{\text {f }}$ ) |
| $\mathrm{MeCO} \mathrm{O}_{2} \mathrm{CH}=\mathrm{C}(3)$ | $167.15(s)^{\text {f }}$ ) | $167.15(s)^{\text {f }}$ ) |  | $167.19(s)^{\text {¢ }}$ ) | $167.20(s)^{\text {f }}$ ) | $166.66(s)^{\text {g }}$ ) | $166.91(s)^{\text {E }}$ ) |

${ }^{\text {a }}$ ) In $\mathrm{CDCl}_{3}$.
$\left.{ }^{7}\right) \quad \mathrm{R}$ part: $163.45(s, \mathrm{C}=\mathrm{O}) ; 133.12(s, \mathrm{C}(1)) ; 129.96(d, \mathrm{C}(2)) ; 134.74(s, \mathrm{C}(3)) ; 132.91(d, \mathrm{C}(4)) ; 129.92(d, \mathrm{C}(5))$; 127.96 ( $d, \mathrm{C}(6)$ ).
$\left.{ }^{9}\right) \quad \mathrm{R} \mathrm{part:} 163.40(s, \mathrm{C}=\mathrm{O}) ; 133.03(s, \mathrm{C}(1)) ; 129.98(d, \mathrm{C}(2)) ; 134.72(s, \mathrm{C}(3)) ; 132.89(d, \mathrm{C}(4)) ; 129.84(d, \mathrm{C}(5))$; signal of $C(6)$ hidden under the solvent signal.
$\left.{ }^{d}\right)$ Not detected.
$\left.\left.{ }^{c}\right)^{f}\right)^{g}$ ) These signals can be interchanged.
$(-)-(R)-$ or $(+)-(S)-\mathrm{CF}_{3} \mathrm{C}(\mathrm{OMe})(\mathrm{Ph}) \mathrm{COCl}[7]$, respectively. However, the $\Delta \delta\left(\delta_{S}-\delta_{R}\right)$ value for $\mathrm{H}-\mathrm{C}(6)$ (see Formula 5) is far from ideal zero, as would be expected for coplanarity of $\mathrm{H}-\mathrm{C}(6)$ with $\mathrm{CF}_{3}-\mathrm{C}-\mathrm{COO}$ (propanoate plane), and opposite $\Delta \delta$ values are measured for the diastereotopic $2 \mathrm{H}-\mathrm{C}(5)$. This suggests a conformational distortion from the ideal propanoate plane [8]. This notwithstanding, the $\Delta \delta$ values for all other protons of diastereoisomers 5 can only consistently be rationalized on the basis of the diamagnetic effect of the Ph ring for ( $6 S$ )-configuration. Moreover, the allylic alcohol 3a must have at $C(4)$ the same configuration as in caulerpenyne [6] (1), as expected for a biogenetic descendant.
2.2. Epoxidation of Caulerpenyne. Caulerpenyne [4] (1) was subjected to peroxy-acid epoxidation under conditions suitable for acid-sensitive oxiranes. Thus, treatment of $\mathbf{1}$ with 3-chloroperoxybenzoic acid (3-ClC $\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}_{3} \mathrm{H}\right)$ under $\mathrm{NaHCO}_{3}$ buffering yielded the desired diastereoisomer mixture $\mathbf{2}^{2}$ ), in a complex blend with other products, however

[^1]Scheme

a) $3-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CO}_{3} \mathrm{H}, \mathrm{NaHCO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ}, 1$ h. b) $\mathrm{C}_{6} \mathrm{H}_{6},-20^{\circ}$, over one wcek. c) $\mathrm{Ac}_{2} \mathrm{O} /$ pyridine, r.t., overnight. d) $3-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CO}_{3} \mathrm{H}, \mathrm{Na}_{2} \mathrm{HPO}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ}, 1 \mathrm{~h}$.
(Scheme). Two of these by-products were the diastereoisomeric 6,7-epoxycaulerpenynes ( $\mathbf{6} \mathbf{a}$ and $\mathbf{6 b}$ ), expected from competitive epoxidation at $C(6)=C(7)$; they could be obtained by HPLC in pure form, besides the mixture 7 of bis-epoxides ${ }^{3}$ ). Unexpected products were 7,7-C-didehydro-6-hydroxy-6,7-dihydrocaulerpenyne (3a), the metabolite reported above as a constituent of C. taxifolia, and its 6 -epimer $\mathbf{3 b}$. Esters $\mathbf{8 b}$ and 8a, which have entrapped the reagent, were also isolated from the reaction mixture.

Epoxidation of 1 could be improved in favor of the 10,11 - and 6,7 -epoxides by buffering with $\mathrm{Na}_{2} \mathrm{HPO}_{4}$, thus getting cleanly mixture $2(25 \%$ ) and mixture 6a/6b (ca. $20 \%$ each). While mixture 2 resisted all attempts for separation [4], the diastereoisomeric epoxides $\mathbf{6 b}$ and 6a were obtained in pure form by HPLC and their structures established by their NMR spectra (Table 1 and Exper. Part), after comparison with those of mixture 2 [4].

The absolute configuration of the labile epoxide 6a could be assigned from its spontaneous chemical transformation in benzene at $-20^{\circ}$ into 3 a (Scheme). Similarly the diastereoisomeric epoxide $\mathbf{6 b}$ gave rise to the allylic alcohol $\mathbf{3 b}$ in benzene solution. However, this could only be ascertained by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ monitoring $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$ since $\mathbf{3 b}$ decomposed into unidentified aldehydic products (typical ${ }^{1} \mathrm{H}$-NMR signals at 8.85, 9.27, and 10.40 ppm ).

[^2]Table 2. Biological Assays of 7,7-C-Didehydro-6-hydroxy-6,7-dihydrocaulerpenyne (3a)
with Marine Ciliates and Marine and Non-Marine Bacteria in Comparison with Data [5] of Caulerpenyne (1) and 10,11-Epoxycaulerpenyne (2)

| Bacteria |  |  | Growth inhibition zone diameter at $60 \mu \mathrm{~g} /$ disk |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Strain | Taxon | Origin | $1^{\text {a }}$ ) | $\mathbf{2}^{\text {a }}$ ) | 3a |
| I4b | Xantomonas sp. | Funiculina quadrangularis ${ }^{\text {b }}$ ) | 0 | 0 | 6 |
| I6 | Planococcus sp. | Pteria hirundo ${ }^{\text {c }}$ ) | 3 | 12 | 29 |
| 19b | Pseudomonas sp. or Alteromonas sp. | demosponge $\mathrm{SC}^{\text {d }}$ ) | 0 | ${ }^{\text {h }}$ ) | 0 |
| I11a | Xantomonas sp. | Alcyonium palmatum ${ }^{\text {e }}$ ) | 10 | 22 | 27 |
| I17i | Xantomonas sp. or Flavobacterium sp. | Cymbulia peroni ${ }^{\text {f }}$ ) | 13 | 15 | 31 |
| C21d | Pseudomonas sp. | C. taxifolia ${ }^{\text {g }}$ ) | 0 | 0 | 0 |
| C24b | Vibrio vulnificus | C.taxifolia ${ }^{\text {g }}$ | 0 | 4 | 13 |
| ATCC 25923 | Staphylococcus aureus | non-marine reference strain | 17 | 19 | 33 |


| Ciliates |  |  | $\left.\left.L D_{(000}{ }^{\mathrm{i}}\right), E D_{100}{ }^{\mathrm{k}}\right)[\mu \mathrm{g} / \mathrm{ml}]$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Strain | Taxon | Origin | $1^{\text {a }}$ ) | $2^{\text {a }}$ ) | 3a |
| TB6 | Euplotes vannus | Tanabe (Japan), 7/1983 | $\left.>20{ }^{1}\right), 20$ | 20, 10 | 20, 5 |
| CM1 | Euplotes sp. | Cap Martin (France), 7/1992 | $\left.>20^{1}\right), 10$ | 10,5 | 10, 5 |
| CM2 ${ }^{\text {m }}$ ) | Euplotes sp. | Cap Martin (France), 7/1992 | $>20{ }^{1}$ ), 10 | 20, 10 | 10, 5 |
| G-Lb $5^{\text {r }}$ ) | Euplotes crassus | Gesira (Somalia), 8/1974 | 20, 10 | 5, 1.2 | 1.2,0.5 |
| 11Rec ${ }^{7}$ ) | Euplotes crassus | Sciacca-Strazzone (Italy), 12/1974 | $20,>10$ | 10, 5 | 10,0.5 |
| SR2 | Euplotes minuta | San Rossore (Italy), 3/1991 | $\left.>20^{\prime}\right), 10$ | $>20{ }^{\prime}$ ), 10 | 20, 10 |
| MP1 | Euplotes minuta | Marina di Pisa (Italy), 3/1991 | $\left.>20^{1}\right), 10$ | 20,10 | 20, 5 |
| SicAA | Euplotes rariseta | Milazzo (Italy), 9/I980 | 10, 5 | 5, 1.2 | 2.5, 0.5 |
| PR5 | Diophrys oligothrix | Porto Recanati (Italy), 6/1979 | 2,1 | 1.2, ${ }^{\text {h }}$ ) | 0.5, ${ }^{\text {h }}$ ) |

${ }^{\text {a }}$ ) Already reported in preliminary form [5].
${ }^{\text {b }}$ ) Pennatulacea; dredging C2, May 20, 1991, from $43^{\circ} 25.23^{\prime} \mathrm{N}, 9^{\circ} 58.15^{\prime} \mathrm{E}$ to $43^{\circ} 19.70^{\prime} \mathrm{N}, 10^{\circ} 00.90^{\prime}$, E, mean depth 137 m .
${ }^{c}$ ) Ctenidobranchia; dredging D3, May 23, 1991 , from $43^{\circ} 09.66^{\prime} \mathrm{N}, 9^{\circ} 36.18^{\prime} \mathrm{E}$, to $43^{\circ} 04.78^{\prime} \mathrm{N}, 9^{\circ} 38.31^{\prime} \mathrm{E}$, mean depth 357 m .
${ }^{d}$ ) Dredging C3, May 231991 , from $43^{\circ} 16.34^{\prime} \mathrm{N}, 10^{\circ} 09.72^{\prime}$ E to $43^{\circ} 10.36^{\prime} \mathrm{N}, 10^{\circ} 08.20^{\prime} \mathrm{E}$, mean depth 126 m .
${ }^{\text {e }}$ ) Alcyonacea; dredging C6, May 23, 1991, from $43^{\circ} 16.23^{\prime} \mathrm{N}, 10^{\circ} 19.90^{\prime} \mathrm{E}$ to $43^{\circ} 10.09^{\prime} \mathrm{N}, 10^{\circ} 25.45^{\prime} \mathrm{E}$, mean depth 64 m .
${ }^{f}$ ) Acochlidiomorpha; dredging E1, May 6, 1991, from $43^{\circ} 34.61^{\prime} \mathrm{N}, 9^{\circ} 33.36^{\prime} \mathrm{E}$, to $43^{\circ} 31.79^{\prime} \mathrm{N}, 9^{\circ} 38.70^{\prime} \mathrm{E}$, mean depth 584 m .
${ }^{\text {g }}$ ) Cap Martin (France).
${ }^{h}$ ) Not checked.
${ }^{i}$ ) Lowest concentration for $100 \%$ kills.
${ }^{k}$ ) Lowest dose eliciting a fission rate delay in $100 \%$ of tested cells.
${ }^{1}$ ) Less than $100 \%$ kills observed at the highest attainable concentration ( $20 \mu \mathrm{~g} / \mathrm{ml}$ ) of the terpene in the medium used for bioassays.
${ }^{m}$ ) Their membership to E.vannus or E.crassus has not been determined as yet.
${ }^{n}$ ) Fl strains established in the laboratory from Fl hybrid lines involving wild stocks.

These observations suggest that epoxides $\mathbf{6 a}$ and $\mathbf{6 b}$, though elusive, are also metabolites of C. taxifolia, from which allylic alcohols 3a and 3b may descend, enzymatically or not. Epoxides $\mathbf{6 a}$ and/or $\mathbf{6 b}$, can also be seen as precursors of taxifolione (4), and it may also be envisaged that the monoterpene taxifolial D present in C. taxifolia [4] arises along an epoxidation route from an elusive $\Delta^{5,6}$-sesquiterpene analog of caulerpenyne. Anyway, late biogenetic events in C. taxifolia of Cap Martin seem to be centered around sesquiterpene epoxides. This was not noticed during previous extensive examinations of the Caulerpales [1] ${ }^{4}$ ).
2.3. Biological Activities. The antibacterial and cytotoxic activities of 7,7-C-didehy-dro-6-hydroxy-6,7-dihydrocaulerpenyne (3a), isolated from C. taxifolia or obtained from epoxide 6a, were evaluated toward marine bacteria, as prokaryotes, and ciliate protists, as unicellular eukaryotes (Table 2), whose feeding relationships are an important factor in food-web models [9], and compared with the corresponding activities of caulerpenyne [4] (1) and 10,11-epoxycaulerpenyne [5] (2). In these tests, the stability and solubility of the very sensitive C.taxifolia terpenoids were carefully considered; their genuineness, both in EtOH solutions where they were stored and in $\mathrm{EtOH} /$ seawater solutions used for cytotoxicity assays, was checked by HPLC and NMR techniques before any set of experiments.

With the exception of two bacteria, either isolated from marine invertebrates like strain I9b or seaweeds like strain C21d which was resistant, 3a had the highest antibacterial activity of all terpenes isolated from C. taxifolia ([5] and Table 2). Taking strain I6 (Planococcus sp.) as an example, the highest amounts of 1, 2, and 3a not exerting any inhibitory effect on bacterial growth were 50,30 , and $5 \mu \mathrm{~g} /$ disk, respectively. This trend was observed also with the reference strain ATCC 25923 Straphylococcus aureus, the corresponding doses of $\mathbf{1 , 2}$, and 3a being 30,20 , and $10 \mu \mathrm{~g} /$ disk, respectively.

The susceptibility of the ciliates to the C.taxifolia terpenes shows an inter- and intra-specific variability ([5] and Table 2). This is not surprising considering the differences in geographical origin and phylogenetic relationships among the populations. What is worth noticing is the similarity in susceptibility between CM and other strains, even if the first ones were collected in an area colonized by Caulerpa taxifolia. Overall, like with bacteria, triacetate 3a proved the most active of the terpenes of C.taxifolia, in some instances inducing toxic effects at a concentration as low as $0.5 \mu \mathrm{~g} / \mathrm{ml}$ ([5] and Table 2 ). Thus, although sporadic resistance was observed with marine bacteria, the potential ecologic impact of triacetate $\mathbf{3 a}$ on a microbial community appears ravaging, which may contribute to the success of this seaweed in invading the Mediterranean.

It is intriguing that, overall, the highest antibacterial and cytotoxic activities are displayed by epoxides of C. taxifolia terpenes, like 2, or by allylic alcohols derived from them, like 3a. Thus, one might be tempted to link the increase of cytotoxicity observed for

[^3]seawater/EtOH solutions of $\mathbf{2}$ on standing [5] to $\beta$-elimination leading to epoxide opening to form an allylic alcohol. This was not easy to assess for dilute solutions of terpenes in water where deprotection of enol acetates may be a competitive process.

We thank Mr. S. Gadotti, Mr. A. Tomei, and Mr. A. Sterni for excellent technical aid in synthesis/isolation, bioassays with ciliates, and mass spectra, respectively. We also thank the director and staff of Consorzio Regionale di Idrobiologia e Pesca, Livorno, for allowing F.M. and F. P. to take part in dredging campaigns to collect marine invertebrates, and MURST (Progetti $40 \%$ ) and CNR, Roma, for financial support.

## Experimental Part

1. General. See [4]. Moreover: For ${ }^{1} \mathrm{H}-\mathrm{NMR}$, the notation 'small' indicates $J<0.5 \mathrm{~Hz}$.
2. Collection and Isolation. C.taxifolia was recollected on beginning August 1992 in the area of Cap Martin, Côte d'Azur. Following the procedure described previously [4], the FC fraction eluted with petroleum ether/AcOEt $5: 1$ was subjected to HPLC with hexane/AcOEt 49:1: taxifolione ( $4 ; t_{\mathrm{R}} 13.5 \mathrm{~min}, 0.0027 \%$ rel. to freeze-dried seaweed). The FC fraction eluted with petroleum ether/AcOEt 1:4 was subjected to HPLC with hexane/AcOEt 3:1: 7,7 -C-didehydro- 6 -hydroxy-6,7-dihydrocaulerpenyne ( $\mathbf{3 a} ; t_{\mathrm{R}} 24.5 \mathrm{~min}, 0.0021 \%$ rel. to freeze-dried seaweed). These two terpenes, on examination of residual freeze-dried seaweed, were also present in the previous collection of C. taxifolia [4].
3. Solubility and Stability of C.taxifolia Terpenes. In abs. EtOH at $-20^{\circ}$, both caulerpenyne (1) and $10,11-$ epoxycaulerpenyne ( $2 ; c a .1 \mathrm{mg} / \mathrm{ml}$ ) were stable for some months. Under the same conditions, the taxifolials [4] were less stable [5]. For all these terpenes, degradation, once started, ran as an autocatalytic reaction. In seawater/ EtOH mixtures, the solubility decreased with the EtOH content, the limit being 20 or $5 \mu \mathrm{~g} / \mathrm{ml}$ for 1 in seawater containing 2 or $0.5 \% \mathrm{EtOH}$, respectively, and $5 \mu \mathrm{~g} / \mathrm{ml}$ for 2 in seawater containing $0.6 \% \mathrm{EtOH}$. Exceeding these limits led to the formation of oily droplets, which could be observed under the microscope. In seawater/EtOH solutions, these terpenes were far less stable than in $100 \% \mathrm{EtOH}$, e.g. 1 disappearing by 30,45 , and $55 \%$ in 1,5 , and 29 h , respectively, and $\mathbf{2}$ by $\mathbf{3 0 \%}$ in 1 h and completely in less than 17 h . Triacetate $\mathbf{3 a}$ is comprised within these limits.
4. Biological Assays. 4.1. Antibacterial Assays. Bacteria were selected from our collection as isolates of marine invertebrates, collected by dredging off the coast of Tuscany, and from C. taxifolia of Cap Martin. The antimicrobial activity was determined according to NCCLS's directions [10] for the agar-diffusion method, optimized as follows. Test bacteria were harvested from culture exponentially growing in Difco Marine Broth 2216 E, washed twice, and diluted to $0.5 \times 10^{8} \mathrm{cells}^{\mathrm{ml}}{ }^{-1}$, with sterile artificial seawater [11]. EtOH solns. of the test terpene ( ca .1 $\mathrm{mg} / \mathrm{ml}$ ) were absorbed on a standard paper disk ( $B B L ; 7 \mathrm{~mm}$ diameter), which was dried so as to have $10-60 \mu \mathrm{~g}$ of terpene per disk, which were placed on a Petri agar plate ( $66.5 \mathrm{~cm}^{2}$ ) containing the agarized Marine Broth ( $1.5 \%$ Bacto Agar, w/v), freshly seeded with the bacterial suspension ( 0.1 ml ). The plate was incubated at $25^{\circ}$ for $24-96 \mathrm{~h}$, or longer for slow-growing marine bacteria. The test was run in triplicate for each terpene and bacterium, considering the bacterial growth inhibition zone diameter around the paper disk. Strains giving a diameter $<2.0$ mm at $60 \mu \mathrm{~g} /$ disk of test terpene were considered to be resistant; for sensitive strains, the amount of test terpene resulting in a growth inhibition diameter of 2.0 mm was assumed as the highest dose of terpene not exerting any inhibitory effect on bacterial growth.
4.2. Cytotoxicity Assays. To minimize problems of degradation, C.taxifolia terpenes were used as freshly prepared solns. (from ca. $1 \mathrm{mg} / \mathrm{ml}$ stable solns. in abs. EtOH ) in sterile, defined, artificial seawater [12], which thus had from 0.05 to $2 \%$ content of EtOH (ineffective per se, at these concentrations, on any of the ciliate stocks, as shown by control experiments). For each strain of ciliate and each terpene tested (Table 2), a series of consecutive steps in concentration was used to define $L D_{100}$ and $E D_{100}$ (see Table 2 for definitions). Cytotoxic effects were assessed microscopically as complete loss of motility ( $L D_{100}$ ) or as number of fission products that a single cell gave per time unit, from which the fission rate in fissions/day was calculated. Each strain was run 3 times in successive days. Cytotoxic effects were assessed in 6 single cells for each terpene concentration at each run for each strain. Effects were scored after $3 \pm 1$ and $16 \pm 1 \mathrm{~h}$, the latter being a longer generation time than any species analyzed. Controls were included for solvent-treated as well as untreated cells, and they were run simultaneously with terpene-treated cells.
5. 7,7-C-Didehydra-6-hydroxy-6,7-dihydrocaulerpenyne $(=(4 \mathrm{~S}, 6 \mathrm{~S}, 1 \mathrm{E})$-3-/(Z)-Acetoxymethylidene $)$ - 6 -hy-droxy-11-methyl-7-methylidenedodeca-1,10-dien-8-yne-1,4-diyl Diacetate; 3a). $[\alpha]_{\mathrm{D}}^{20}=-53.7(c=0.095, \mathrm{EtOH})$. UV (EtOH): $242(21500) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): 7.93(d d, J(1,2)=12.6, J(1, \mathrm{OCH}=\mathrm{C}(3))=0.6, \mathrm{H}-\mathrm{C}(1)) ; 1.554(s$, $\mathrm{AcO}-\mathrm{C}(1)$ or $A c \mathrm{OCH}=\mathrm{C}(3)$ ); $5.77(d d, J(2,1)=12.6, J(2, \mathrm{OCH}=\mathrm{C}(3))=1.0, \mathrm{H}-\mathrm{C}(2)) ; 7.30$ (br. $d d$, $J(\mathrm{OCH}=\mathrm{C}(3), 2)=1.0, J(\mathrm{OCH}=\mathrm{C}(3), 1)=0.6, J(\mathrm{OCH}=\mathrm{C}(3), 4)$ small, $\mathrm{OCH}=\mathrm{C}(3)) ; 1.551(s, \mathrm{Ac} \mathrm{OCH}=\mathrm{C}(3)$ or $\mathrm{AcO}-\mathrm{C}(1)) ; 6.54(\mathrm{br} . d d, J(4,5 \beta)=10.5, J(4,5 x)=3.3, J(4, \mathrm{OCH}=\mathrm{C}(3))$ small, $\mathrm{H}-\mathrm{C}(4)) ; 1.69(s, \mathrm{AcO}-\mathrm{C}(4))$; $2.00\left(d d d, \quad J_{\mathrm{gem}}=14.7, \quad J(5 \alpha, 6)=9.3, \quad J(5 \alpha, 4)=3.3, \quad \mathrm{H}_{\alpha}-\mathrm{C}(5)\right) ; 2.68 \quad\left(d d d, \quad J_{\mathrm{gem}}=14.7, J(5 \beta, 4)=10.5\right.$, $\left.J(5 \beta, 6)=3.0, \mathrm{H}_{\beta}-\mathrm{C}(5)\right) ; 4.27\left(d d d d, J(6,5 \alpha)=9.3, J(6,5 \beta)=3.0, J\left(6, \mathrm{CH}_{\mathrm{b}}-\mathrm{C}(7)\right)=1.5, J\left(6, \mathrm{CH}_{\mathrm{a}}=\mathrm{C}(7)\right)=1.2\right.$, $\mathrm{H}-\mathrm{C}(6)) ; 5.45$ (br. $\left.s, J_{\mathrm{gem}}=1.5, J\left(\mathrm{CH}_{\mathrm{a}}=\mathrm{C}(7), 6\right)=1.2, \mathrm{CH}_{\mathrm{d}}=\mathrm{C}(7)\right) ; 5.50\left(d d, J_{\mathrm{gem}}=J\left(\mathrm{CH}_{\mathrm{b}}=\mathrm{C}(7), 6\right)=1.5\right.$, $\left.\mathrm{CH}_{\mathrm{b}}=\mathrm{C}(7)\right) ; 5.38(q q, J(10,12)=1.4, J(10, \mathrm{Me}-\mathrm{C}(11))=1.2, \mathrm{H}-\mathrm{C}(10)) ; 1.84$ (br. $s, J(\mathrm{Me}-\mathrm{C}(11), 10)=1.2$, $J(\mathrm{Me}-\mathrm{C}(11), 12)$ small, $\mathrm{Me}-\mathrm{C}(11) ; 1.46$ (br. $s, J(12,10)=1.4, J(12, \mathrm{Me}-\mathrm{C}(11))$ small, $\mathrm{Me}(12))$. MS: 348 ( 0.3 , $\left.\left[M-\mathrm{CH}_{2} \mathrm{CO}\right]^{+}\right), 331\left(0.2,[M-\mathrm{AcO}]^{+}\right), 330\left(0.4,[M-\mathrm{AcOH}]^{+}\right), 288,\left(2.0,\left[330-\mathrm{CH}_{2} \mathrm{CO}\right]^{+}\right), 271$ (1.9, $\left.[330-\mathrm{AcO}]^{+}\right), 270\left(2.2,[330-\mathrm{AcOH}]^{+}\right), 228\left(8.2,\left[270-\mathrm{CH}_{2} \mathrm{CO}\right]^{+}\right), 213(6.0), 210\left(3.1,[270-\mathrm{AcOH}]^{+}\right), 199$ (7.1), 185 (5.6), 170 (6.5), 149 (3.4), 141 (7.6), 112 (13.2), 91 (12), 43 (100).
6. Taxifolione ( $=6$-Methylhept-5-en-3-yn-2-one; 4). UV (EtOH): 275 (12000). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 2.37(s$, $\mathrm{H}-\mathrm{C}(1)) ; 5.41(q q, J(5,7)=J(5, \mathrm{Me}-\mathrm{C}(6))=1.2, \mathrm{H}-\mathrm{C}(5)) ; 1.90$ (br. $s, J(7,5)=1.2, J(7, \mathrm{Me}-\mathrm{C}(6))$ small, $3 \mathrm{H}-\mathrm{C}(7)) ; 1.99$ (br. $s, J(\mathrm{Me}-\mathrm{C}(6), 5)=1.2, J(\mathrm{Me}-\mathrm{C}(6), 7)$ small, $\mathrm{Me}-\mathrm{C}(6))$. $\mathrm{NOE}: \mathrm{H}-\mathrm{C}(7) \rightarrow 13 \%$ on $\mathrm{H}-\mathrm{C}(5)$. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{COSY}\left({ }^{n} J\right): H-\mathrm{C}(1) / \mathrm{C}(2)$ and $\mathrm{C}(3) ; \mathrm{CH}_{3}-\mathrm{C}(6) / \mathrm{C}(4), \mathrm{C}(6)$, and $\mathrm{C}(7) ; \mathrm{H}-\mathrm{C}(7) / \mathrm{C}(5)$ and $\mathrm{CH}_{3}-\mathrm{C}(6)$.
7. Treatment of 3 a with $\mathrm{CF}_{3} \mathrm{C}(\mathrm{OMe})(\mathrm{Ph}) \mathrm{COCl}$ A soln. of $(-)-(R)-\mathrm{CF}_{3} \mathrm{C}(\mathrm{OMe})(\mathrm{Ph}) \mathrm{COCl}[7](8.0 \mathrm{mg})$ in anh. pyridine $(0.1 \mathrm{ml})$ was added of a soln. of $3 \mathrm{a}(2.05 \mathrm{mg})$ in $\mathrm{CCl}_{4}(0.1 \mathrm{ml})$. The resulting mixture was stirred at r.t. for 14 h . After evaporation, the residue was dissolved in AcOEt and submitted to prep. TLC (petroleum ether/Et O $1: 1$; detection by UV): $\mathbf{5 a}\left(1.8 \mathrm{mg}, 60 \% ; R_{\mathrm{f}} 0.42\right)$. Under otherwise identical conditions, $\mathbf{5 b}\left(57 \%\right.$ yield; $\left.R_{\mathrm{f}} 0.45\right)$ was obtained from 3 a and $(+)-(S)-\mathrm{CF}_{3} \mathrm{C}(\mathrm{OMe})(\mathrm{Ph}) \mathrm{COCl}[7]$.
(4S, $6 \mathrm{~S}, 1 \mathrm{E}$ )-l.4-Diacetoxy-3-I( Z )-acetoxymethylidene $]-11-m e t h y l-7-m e t h y l i d e n e d o d e c a-1,10-d i e n-8-y n-6-y l$ (2R)-3,3,3-Trifluoro-2-methoxy-2-phenylpropanoate (5b): ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 7.62(d d, J=12.6,0.6, \mathrm{H}-\mathrm{C}(1))$; $2.05(s, \mathrm{AcO}-\mathrm{C}(1)$ or $\mathrm{Ac} c \mathrm{OCH}=\mathrm{C}(3)) ; 5.81(d d, J=12.6,0.9, \mathrm{H}-\mathrm{C}(2)) ; \mathrm{OCH}=\mathrm{C}(3)$ not det., probably under the solvent signal; $2.11(s, A c \mathrm{OCH}=\mathrm{C}(3)$ or $\mathrm{AcO}-\mathrm{C}(1)) ; 6.04(d d, J=11.0,3.3, \mathrm{H}-\mathrm{C}(4)) ; 2.16(s, \mathrm{AcO}-\mathrm{C}(4)) ; 2.418$ $\left(d d d, J=14.8,11.0,3.0, \mathrm{H}_{\alpha}-\mathrm{C}(5)\right) ; 2.175\left(d d d, J=14.8,10.3,3.3, \mathrm{H}_{\beta}-\mathrm{C}(5)\right) ; 5.54(d d, J=10.0,3.0, \mathrm{H}-\mathrm{C}(6))$; 5.51 (br. $\left.s, \mathrm{CH}_{2}=\mathrm{C}(7)\right) ; 5.32(q q, J(10,12)=J(10, \mathrm{Me}-\mathrm{C}(11))=1.1, \mathrm{H}-\mathrm{C}(10)) ; \mathrm{I} .82(\mathrm{br} . s, \mathrm{Me}-\mathrm{C}(11)) ; 1.81$ (br. $s$, $\mathrm{Me}(12)$ ).
(4S, $6 \mathrm{~S}, 1 \mathrm{E}$ )-1,4-Diacetoxy-3-/( Z )-acetoxymethylidene j-I1-methyl-7-methylidenedodeca-l,I0-dien-8-yne-6-yl (2S)-3,3,3-Trifluoro-2-methoxy-2-phenylpropanoate (5a): ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 7.57(d d, J=12.9,0.9, \mathrm{H}-\mathrm{C}(1))$; $2.05(s, \mathrm{AcO}-\mathrm{C}(1)$ or $A c \mathrm{OCH}=\mathrm{C}(3)) ; 5.78(d d, J=12.9,1.1, \mathrm{H}-\mathrm{C}(2)) ; 7.20$ (br. $s, \mathrm{OCH}=\mathrm{C}(3)) ; 2.09(s$, $A c \mathrm{OCH}=\mathrm{C}(3)$ or $\mathrm{AcO}-\mathrm{C}(1)) ; 5.86(d d, J=11.0,3.6, \mathrm{H}-\mathrm{C}(4)) ; 2.15(\mathrm{~s}, \mathrm{AcO}-\mathrm{C}(4)) ; 2.345(d d d, J=14.9,11.0,3.5$, $\left.\mathrm{H}_{\alpha}-\mathrm{C}(5)\right) ; 2.192\left(d d d, J=14.9,10.2,3.6, \mathrm{H}_{\beta}-\mathrm{C}(5)\right) ; 5.64(d d, J=10.2,3.5, \mathrm{H}-\mathrm{C}(6)) ; 5.62\left(\mathrm{br} . s, \mathrm{CH}_{\mathrm{a}}=\mathrm{C}(7)\right) ; 5.56$ (br. $s, \mathrm{CH}_{\mathrm{b}}=\mathrm{C}(7)$ ); $5.39(q q, J(10,12)=J(10, \mathrm{Me}-\mathrm{C}(11))=1.2, \mathrm{H}-\mathrm{C}(10)) ; 1.84$ (br. $s, \mathrm{Me}-\mathrm{C}(11), \mathrm{Me}(12)$ ).
8. Epoxydation of Caulerpenyne [4] (1) with 3-Chloroperoxybenzoic Acid. 8.1. Buffered with $\mathrm{NaHCO}_{3}$. To a soln. of $\mathbf{1}(52 \mathrm{mg}, 0.139 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ were added $80 \% 3-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CO}_{3} \mathrm{H}(35.9 \mathrm{mg})$ and $\mathrm{NaHCO}_{3}(17.5 \mathrm{mg}$, 0.21 mmol ). On stirring at $0^{\circ}$ for 1 h , all 1 disappeared. The mixture was filtered and evaporated. $\mathrm{Et}_{2} \mathrm{O}$ was added, the org. phase washed with $\mathrm{NaHSO}_{3}$ and then $\mathrm{NaHCO}_{3}$ soln., dried ( $\mathrm{Na}_{2} \mathrm{SO}_{4}$ ), and evaporated and the residue ( 62 mg ) subjected to HPLC (silica gel, gradient hexane/AcOEt $85: 15 \rightarrow 7: 3$ ) to give, in order of increasing polarity, fractions $a-g$. Fr. $a, \mathbf{6 a}(2.2 \mathrm{mg}, 4 \%$ ); Fr.b, $\mathbf{6 b}(3.0 \mathrm{mg}, 5 \%$ ); Fr.c, $1: 1$ diastereoisomer mixture of 10,11 -epoxycaulerpenyne ( $2 ; 10.3 \mathrm{mg}, 19 \%$ ); Fr. $d$, diastereoisomer mixture $7(7.8 \mathrm{mg}, 13 \%$ ) which was not separated; Fr.e, 2:5 mixture $\mathbf{8 b} / \mathbf{8 a}(14.6 \mathrm{mg})$; Fr.f, ca. $\mathbf{1 : 1}$ mixture $\mathbf{8 b} / \mathbf{3 b}(6.0 \mathrm{mg})$ which was separated by HPLC (hexane/AcOEt 7:3); Fr.g, 3a ( $3.8 \mathrm{mg}, 7 \%$ ). Yields: $\mathbf{8 a} 11 \%, \mathbf{8 b} 9 \%$, and $\mathbf{3 b} 5 \%$.

Both $\mathbf{8 a}$ and $\mathbf{8 b}$ were acetylated with excess $\mathrm{Ac}_{2} \mathrm{O}$ in pyridine (overnight at r.t. to give $\mathbf{9 a}$ and $\mathbf{9 b}$, respectively quant.).
(4S,6R, 1 E )-3-/( Z$)$-Acetoxymethylidene $]-6-h y d r o x y-11-m e t h y l-7-m e t h y l i d e n e d o d e c a-1,10-d i e n-8-y n e-1,4-$ diyl Diacetate (3b): ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): 7.94(d d, J(1,2)=12.6, J(1, \mathrm{OCH}=\mathrm{C}(3))=0.6, \mathrm{H}-\mathrm{C}(1)) ; 1.56(s, \mathrm{AcO}-\mathrm{C}(1)$ or $A c \mathrm{OCH}=\mathrm{C}(3)$ ); 5.78 (br. $d d, J(2,1)=12.6, J(2, \mathrm{OCH}=\mathrm{C}(3))=1.4, J(2,4)$ small, $\mathrm{H}-\mathrm{C}(2)) ; 7.33(d d$, $J(\mathrm{OCH}=\mathrm{C}(3), 2)=1.4, J(\mathrm{OCH}=\mathrm{C}(3), 1)=0.6, \mathrm{OCH}=\mathrm{C}(3)) ; 1.62(s, A c \mathrm{OCH}=\mathrm{C}(3)$ or $\mathrm{AcO}-\mathrm{C}(1)) ; 6.44$ (br. $d d$, $J(4,5 \beta)=J(4,5 \alpha)=7.5, J(4,2)$ small, $\mathrm{H}-\mathrm{C}(4)) ; 1.68(s, \mathrm{AcO}-\mathrm{C}(4)) ; 2.369,2.372(2 d d d, J=15.0,7.5,7.5$ and $J=15.0,7.5,6.0$, resp., $\mathrm{CH}_{2}(5)$ ); 3.5 (br. $s, \mathrm{OH}$ ), 4.14 (br. $d d, J=7.5,6.0, \mathrm{H}-\mathrm{C}(6)$ ); 5.41 (br. $s, J_{\text {gem }}=1.5$, $J\left(\mathrm{CH}_{\mathrm{a}}-\mathrm{C}(7), 6\right)$ small, $\left.\mathrm{CH}_{\mathrm{a}}=\mathrm{C}(7)\right) ; 5.38\left(d d, J_{\mathrm{gern}}=J\left(\mathrm{CH}_{\mathrm{b}}=\mathrm{C}(7), 6\right)=1.5, \mathrm{CH}_{\mathrm{b}}=\mathrm{C}(7)\right) ; 5.37(q q, J(10,12)=1.5$, $J(10, \mathrm{Me}-\mathrm{C}(11))=1.2, \mathrm{H}-\mathrm{C}(10)) ; 1.79$ (br. $s, J(\mathrm{Me}-\mathrm{C}(11), 10)=1.2, J(\mathrm{Me}-\mathrm{C}(11), 12)$ small, Me-C(11)); 1.45
(br. $s, J(12,10)=1.5, J\left(12, \mathrm{Me}-\mathrm{C}(11)\right.$ ) small, $\mathrm{Me}(12)$ ). NOE: $\mathrm{H}-\mathrm{C}(6) \rightarrow 6 \%$ on $\mathrm{CH}_{\mathrm{a}}=\mathrm{C}(7)$. MS: $331(0.2$, $\left.[M-\mathrm{AcO}]^{+}\right), 330\left(0.4,[M-\mathrm{AcOH}]^{+}\right), 288(2.2), 271(4.8), 270(4.2), 255(4.2), 246$ (3.0), 229 (9.1), 228 (13.8), 213 (10.5), 199 (12.6), 43 (100).
(4S,6S,7S,1E)-3-[(Z)-Acetoxymethylidene]-6,7-epoxy-7,11-dimethyldodeca-1,10-dien-8-yne-1,4-diyl Diacetate ( 6 ): ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): 7.91$ (br. $d, J(1,2)=12.6, J(1, \mathrm{OCH}=\mathrm{C}(3))$ small, $\left.\mathrm{H}-\mathrm{C}(1)\right) ; 1.56(s, \mathrm{AcO}-\mathrm{C}(1)$ or $A c \mathrm{OCH}=\mathrm{C}(3)) ; 5.71$ (br. $d, J(2,1)=12.6, J(2 \mathrm{OCH}=\mathrm{C}(3))$ small, $\mathrm{H}-\mathrm{C}(2)) ; 7.34$ (br. $s, J(\mathrm{OCH}=\mathrm{C}(3), 2)$ and $J(\mathrm{OCH}=\mathrm{C}((3), 1)$ small, $\mathrm{OCH}=\mathrm{C}(3)) ; 1.57(s, \mathrm{Ac} \mathrm{OCH}=\mathrm{C}(3)$ or $\mathrm{AcO}-\mathrm{C}(1)) ; 6.34$ (br. $d d, J(4,5 \beta)=6.6$, $J(4,5 \alpha)=8.4, \mathrm{H}-\mathrm{C}(4)) ; 1.68(s, \mathrm{AcO}-\mathrm{C}(4)) ; 2.00\left(d d d, J_{\mathrm{gem}}=14.1, J(5 \alpha, 4)=8.4, J(5 \alpha, 6)=6.6, \mathrm{H}_{\alpha}-\mathrm{C}(5)\right) ; 1.92$ $\left(d d d, J_{\mathrm{gem}}=14.1, J(5 \beta, 4)=6.6, J(5 \beta, 6)=6.6, \mathrm{H}_{\beta}-\mathrm{C}(5)\right) ; 3.34(d d, J(6,5 \alpha)=J(6,5 \beta)=6.6, \mathrm{H}-\mathrm{C}(6)) ; 1.52(s$, $\mathrm{Me}-\mathrm{C}(7)) ; 5.22(q q, J(10,12)=J(10, \mathrm{Me}-\mathrm{C}(11))=1.1, \mathrm{H}-\mathrm{C}(10)) ; 1.73$ (br. $s, J(\mathrm{Me}-\mathrm{C}(11), 10)=1.1$, $J(\mathrm{Me}-\mathrm{C}(11), 12)$ small, $\mathrm{Me}-\mathrm{C}(11)) ; 1.40$ (br. $s, J(12,10)=1.1, J(12, \mathrm{Me}-\mathrm{C}(11)$ small, $\mathrm{Me}(12))$.
(4S,6R,7R,1E)-3-/(Z)-Acetoxymethylidene]-6,7-epoxy-7,11-dimethyldodeca-1,10-dien-8-yne-1,4-diyl Diacetate ( $\mathbf{6 b}$ ): ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): 7.91$ (br. $d, J(1,2)=12.8, J(1, \mathrm{OCH}=\mathrm{C}(3))$ small, $\left.\mathrm{H}-\mathrm{C}(1)\right) ; 1.576(s, \mathrm{AcO}-\mathrm{C}(1)$ or $A c \mathrm{OCH}=\mathrm{C}(3)$ ); 5.69 (br. $d, J(2,1)=12.8, J(2, \mathrm{OCH}=\mathrm{C}(3))$ small, $\mathrm{H}-\mathrm{C}(2)$ ); 7.36 (br. $s, J(\mathrm{OCH}=\mathrm{C}(3), 2)$, $J(\mathrm{OCH}=\mathrm{C}(3), 1)$, and $J(\mathrm{OCH}=\mathrm{C}(3), 4)$ small, $\mathrm{OCH}=\mathrm{C}(3)) ; 1.583(s, A c \mathrm{OCH}=\mathrm{C}(3)$ or $\mathrm{AcO}-\mathrm{C}(1)) ; 6.36$ (br. $d d$, $J(4,5 \beta)=6.6, J(4,5 \alpha)=8.7, J(4, \mathrm{OCH}=\mathrm{C}(3))$ small, $\mathrm{H}-\mathrm{C}(4)) ; 1.70(s, \mathrm{AcO}-\mathrm{C}(4)) ; 1.89\left(d d d, J_{\text {gem }}=14.1\right.$, $\left.J(5 \alpha, 4)=8.7, J(5 \alpha, 6)=6.6, \mathrm{H}_{\mathrm{a}}-\mathrm{C}(5)\right) ; 2.00\left(d d d, J_{\mathrm{gem}}=14.1, J(5 \beta, 4)=J(5 \beta, 6)=6.6, \mathrm{H}_{\beta}-\mathrm{C}(5)\right) ; 3.29(t$, $J(6,5 \alpha)=J(6,5 \beta)=6.6, \mathrm{H}-\mathrm{C}(6)) ; 1.43(s, \mathrm{Me}-\mathrm{C}(7)) ; 5.21(q q, J(10,12)=J(10, \mathrm{Me}-\mathrm{C}(11))=1.2, \mathrm{H}-\mathrm{C}(10))$; 1.73 (br. $s, J(\mathrm{Me}-\mathrm{C}(11), 10)=1.2, J(\mathrm{Me}-\mathrm{C}(11), 12$ ) small, $\mathrm{Me}-\mathrm{C}(11)$ ); 1.38 (br. $s, J(12,10)=1.2, J(12$, $\mathrm{Me}-\mathrm{C}(11)$ ) small, $\mathrm{Me}(12)$ ).
(4S,6R,IE)-1,4-Diacetoxy-3-I( Z )-acetoxymethylidene $]-6$-hydroxy-7,11-dimethyldodeca-1,10-dien-8-yn-7-yl 3-Chlorobenzoate (8a; configuration at $\mathrm{C}(6)$ tentative): ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): 7.99$ (br. d, J(1,2)=12.6, J(1, $\mathrm{OCH}=\mathrm{C}(3))$ small, $\mathrm{H}-\mathrm{C}(1)) ; 1.57 \quad(s, \mathrm{AcO}-\mathrm{C}(1)$ or $\mathrm{Ac} \mathrm{OCH}=\mathrm{C}(3)) ; 5.81 \quad(d d, \quad J(2,1)=12.6, \quad J(2$, $\mathrm{OCH}=\mathrm{C}(3))=0.9, \mathrm{H}-\mathrm{C}(2)$ ); 7.35 (br. $s, J(\mathrm{OCH}=\mathrm{C}(3), 2)=0.9, J(\mathrm{OCH}=\mathrm{C}(3), 1)$ and $J(\mathrm{OCH}=\mathrm{C}(3), 4)$ small, $\mathrm{OCH}=\mathrm{C}(3)) ; 1.61(s, A c \mathrm{OCH}=\mathrm{C}(3)$ or $\mathrm{AcO}-\mathrm{C}(1)) ; 6.64$ (br. $d d, J(4,5 \alpha)=2.9, J(4,5 \beta)=11.1, J(4, \mathrm{OCH}=\mathrm{C}(3))$ small, $\mathrm{H}-\mathrm{C}(4)) ; 1.77(s, \mathrm{AcO}-\mathrm{C}(4)) ; 1.98\left(d d d, J_{\mathrm{gem}}=14.4, J(5 \alpha, 4)=2.9, J(5 \alpha, 6)=10.4, \mathrm{H}_{\mathrm{z}}-\mathrm{C}(5)\right) ; 2.84(d d d$, $\left.J_{\mathrm{gem}}=14.4, J(5 \beta, 4)=11.1, J(5 \beta, 6)=1.5, \mathrm{H}_{\beta}-\mathrm{C}(5)\right) ; 4.39(d d, J(6,5 \alpha)=10.4, J(6,5 \beta)=1.5, \mathrm{H}-\mathrm{C}(6)) ; 1.89(s$, $\mathrm{Me}-\mathrm{C}(7)) ; 5.26(q q, J(10,12)=J(10, \mathrm{Me}-\mathrm{C}(11))=1.2, \quad \mathrm{H}-\mathrm{C}(10)) ; 1.86$ (br. $s, J(\mathrm{Me}-\mathrm{C}(11), 10)=1.2$, $J(\mathrm{Me}-\mathrm{C}(11), 12$ ) small, $\mathrm{Me}-\mathrm{C}(11)$ ); 1.41 (br. $s, J(12,10)=1.2, J(12$, Me-C(11) small, Me(12)); arom. H: 8.10 (br. $d d, J(2,4)=J(2,6)=1.8, J(2,5)$ small, $\mathrm{H}-\mathrm{C}(2)) ; 7.05(d d d, J(4,5)=8.0, J(4,2)=1.8, J(4,6)=1.1, \mathrm{H}-\mathrm{C}(4)) ; 6.76$ $(d d, J(5,4)=8.0, J(5,2)=7.8, J(5,2)$ small, $\mathrm{H}-\mathrm{C}(5)) ; 7.80(d d d, J(6,5)=8.0, J(6,2)=1.8, J(6,4)=1.1, \mathrm{H}-\mathrm{C}(6))$. MS: 446 ( 0.5 ), 444 (1.1), 288 (5.6), 271 (16.2), 246 (8.7), 245 (9.3), 228 (19.5), 158 (9.1), 156 (22.4), 141 (38.3), 139 (79.8), 123 (48.6), 43 (100).
( $4 \mathrm{~S}, 6 \mathrm{~S}, I \mathrm{E}$ )-1,4-Diacetoxy-3-I( Z$)$-acetoxymethylidene)-6-hydroxy-7,11-dimethyldodeca-1,10-dien-8-yn-7-yl 3-Chlorobenzoate (8b; configuration at $\mathrm{C}(6)$ tentative): ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): 7.97$ (br. $d, J(1,2)=12.4, J(1$, $\mathrm{OCH}=\mathrm{C}(3))$ small, $\mathrm{H}-\mathrm{C}(1)) ; 1.58(s, \mathrm{AcO}-\mathrm{C}(1)$ or $A c \mathrm{OCH}=\mathrm{C}(3)) ; 5.85$ (br. $d, J(2,1)=12.4, J(2, \mathrm{OCH}=\mathrm{C}(3))$ small, $\mathrm{H}-\mathrm{C}(2)$ ); 7.39 (br. $s, J(\mathrm{OCH}=\mathrm{C}(3), 2)$ and $J(\mathrm{OCH}=\mathrm{C}(3), 1)$ small, $\mathrm{OCH}=\mathrm{C}(3)) ; 1.65(\mathrm{~s}, \mathrm{AcOOCH}=\mathrm{C}(3)$ or $\mathrm{AcO}-\mathrm{C}(1)) ; 6.62(d d, J=10.0,5.1, \mathrm{H}-\mathrm{C}(4)) ; 1.68(s, \mathrm{AcO}-\mathrm{C}(4)) ; 2.67,2.28(2 d d d, J=13.9,10.0,1.7$ and $J=13.9,10.7,5.1$, resp., $\left.\left.\mathrm{CH}_{2}(5)\right) ; 4.10 \mathrm{br} . d d d, J=10.7,1.7, J(6, \mathrm{OH})=6.6, \mathrm{H}-\mathrm{C}(6)\right) ; 2.48(\mathrm{br} . d, J(\mathrm{OH}, 6)=6.6$, $\mathrm{OH}), 1.88(s, \mathrm{Me}-\mathrm{C}(7)) ; 5.22(q q, J(10,12)=J(10, \mathrm{Me}-\mathrm{C}(11))=1.2, \mathrm{H}-\mathrm{C}(10)) ; 1.82$ (br. $s, J(\mathrm{Me}-\mathrm{C}(11)$, $10)=1.2, J(\mathrm{Me}-\mathrm{C}(11), 12)$ small, $\mathrm{Me}-\mathrm{C}(11)) ; 1.39$ (br. $s, J(12,10)=1.2, J(12, \mathrm{Me}-\mathrm{C}(11))$ small, $\mathrm{Me}(12)$ ); arom. $\mathrm{H}: 8.06$ (br. $d d, J(2,4)=J(2,6)=2.0, J(2,5)$ small, $\mathrm{H}-\mathrm{C}(2)$ ); $7.02(d d d, J(4,5)=7.9, J(4,2)=2.0, J(4,6)=1.2$, $\mathrm{H}-\mathrm{C}(4)) ; 6.71$ (br. $d d, J(5,4)=J(5,2)=7.9, J(5,2)$ small, H-C(5)); $7.77(d d d, J(6,5)=7.9, J(6,2)=2.0$, $J(6,4)=1.2, \mathrm{H}-\mathrm{C}(6))$. MS: $330(0.6), 305(0.4), 288(3.0), 287(2.2), 271(5.2), 270(3.7), 246(6.5), 231(6.9), 229$ (6.2), 158 (8.5), 156 (24.2), 141 (19.5), 139 (60.5), 43 (100).
8.2. Buffered with $\mathrm{Na}_{2} \mathrm{HPO}_{4}$. Under otherwise identical conditions to those in Exper. 8.1, 2, 6a, and 6b were obtained in 25,20 , and $20 \%$ yield, respectively.
9. Acetylation of $\mathbf{8 a}$ and $\mathbf{8 b}$ with $\mathrm{Ac}_{2} \mathrm{O}$ in pyridine at r.t. overnight gave 9 a and 9 b , respectively (quant.).
(4S,6R,1E)-1,4,6-Triacetoxy-3-[( Z )-acetoxymethylidene $]$-7,11-dimethyldodeca-1,10-dien-8-yn-7-yl 3Chlorobenzoate (9a; configuration at $\mathbf{C}(6)$ tentative): ${ }^{1} \mathrm{H}-\mathrm{NMR} \quad\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): 7.98 \quad(\mathrm{dd}, \quad J(1,2)=12.9, \quad J(1$, $\mathrm{OCH}=\mathrm{C}(3))=0.6, \quad \mathrm{H}-\mathrm{C}(1)) ; 1.55 \quad(s, \mathrm{AcO}-\mathrm{C}(1)$ or $\mathrm{Ac} \mathrm{OCH}=\mathrm{C}(3)) ; 5.79 \quad(d d, \quad J(2,1)=12.9, \quad J(2$, $\mathrm{OCH}=\mathrm{C}(3))=0.9, \mathrm{H}-\mathrm{C}(2)) ; 7.36$ (br. $s, J(\mathrm{OCH}=\mathrm{C}(3), 2)=0.9, J(\mathrm{OCH}=\mathrm{C}(3), 1)=0.6, \mathrm{OCH}=\mathrm{C}(3)) ; 1.62(s$, $A c \mathrm{OCH}=\mathrm{C}(3)$ or $\mathrm{AcO}-\mathrm{C}(1)) ; 6.35(d d, J(4,5 \alpha)=4.2, J(4,5 \beta)=10.5, \mathrm{H}-\mathrm{C}(4)) ; 1.81(s, \mathrm{AcO}-\mathrm{C}(4)$ or $\mathrm{AcO}-\mathrm{C}(6)) ; 2.18\left(d d d, J_{\mathrm{gem}}=14.7, J(5 \alpha, 4)=4.2, J(5 \alpha, 6)=10.8, \mathrm{H}_{\alpha}-\mathrm{C}(5)\right) ; 2.96\left(d d d, J_{\text {gem }}=14.7, J(5 \beta, 4)=10.5\right.$, $\left.J(5 \beta, 6)=2.1, \mathrm{H}_{\beta}-\mathrm{C}(5)\right) ; 6.09(d d, J(6,5 \alpha)=10.8, J(6,5 \beta)=2.1, \mathrm{H}-\mathrm{C}(6)) ; 1.84(s, \mathrm{AcO}-\mathrm{C}(6)$ or $\mathrm{AcO}-\mathrm{C}(4)) ; 1.87$
$(s, \mathrm{Me}-\mathrm{C}(7)) ; 5.28(q q, J(10,12)=J(10, \mathrm{Me}-\mathrm{C}(11))=1.2, \mathrm{H}-\mathrm{C}(10)) ; 1.87$ (br. $s, J(\mathrm{Me}-\mathrm{C}(11), 10)=1.2$, $J(\mathrm{Me}-\mathrm{C}(11), 12)$ small, Me-C(11)); 1.40 (br. $s, J(12,10)=1.2, J(12, \mathrm{Me}-\mathrm{C}(11)$ small, Me(12)); arom. $\mathrm{H}: 8.19$ (br. $d d, J(2,4)=J(2,6)=1.8, J(2,5)$ small, $\mathrm{H}-\mathrm{C}(2)) ; 7.03(d d d, J(4,5)=7.9, J(4,2)=1.8, J(4,6)=1.2, \mathrm{H}-\mathrm{C}(4)) ; 6.77$ $(d d, J(5,4)=7.9, J(5,6)=7.8, J(5,2)$ small, $\mathrm{H}-\mathrm{C}(5)) ; 7.93(d d d, J(6,5)=7.8, J(6,2)=1.8, J(6,4)=1.2, \mathrm{H}-\mathrm{C}(6))$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): 137.32($ d, $\mathrm{C}(1)) ; 19.85\left(q, \mathrm{MeCO}_{2} \mathrm{C}(1)\right.$ or $\left.\mathrm{Me} \mathrm{CO}_{2} \mathrm{CH}=\mathrm{C}(3)\right) ; 167.12\left(s, \mathrm{MeCO} \mathrm{O}_{2} \mathrm{C}(1)\right.$ or $\left.\mathrm{MeCO}_{2} \mathrm{CH}=\mathrm{C}(3)\right)$; $109.72(d, \mathrm{C}(2))$; $119.45(\mathrm{~s}, \mathrm{C}(3)) ; 134.74(d, \mathrm{OCH}=\mathrm{C}(3)) ; 19.91\left(q, \mathrm{Me} \mathrm{CO}_{2} \mathrm{CH}=\mathrm{C}(3)\right.$ or $\left.\mathrm{MeCO}_{2} \mathrm{C}(1)\right) ; 166.43\left(\mathrm{~s}, \mathrm{MeCO}_{2} \mathrm{CH}=\mathrm{C}(3)\right.$ or $\left.\mathrm{MeCO} \mathrm{O}_{2} \mathrm{CH}=\mathrm{C}(1)\right) ; 66.05(d, \mathrm{C}(4)) ; 20.41$ (q, $\mathrm{MeCO}_{2} \mathrm{C}(4)$ or $\mathrm{Me} \mathrm{CO}_{2} \mathrm{C}(6)$ ); 169.77 ( $s, \mathrm{MeCO}_{2} \mathrm{C}(4)$ or $\mathrm{MeCO}_{2} \mathrm{C}(6)$ ); 34.15 ( $t, \mathrm{C}(5)$ ); $72.98\left(d, \mathrm{C}(6 \mathrm{j}) ; 20.47\right.$ ( $q, \mathrm{Me} \mathrm{CO}_{2} \mathrm{C}(6)$ or $\left.\mathrm{Me} \mathrm{CO}_{2} \mathrm{C}(4)\right) ; 169.49\left(s, \mathrm{MeCO}_{2} \mathrm{C}(6)\right.$ or $\left.\mathrm{MeCO}_{2} \mathrm{C}(4)\right) ; 78.11(s, \mathrm{C}(7)) ; 21.69(q, \mathrm{Me}-\mathrm{C}(7)) ; 88.43(s, \mathrm{C}(8)) ; 86.93(s$, $\mathrm{C}(9)) ; 104.95(d, \mathrm{C}(10)) ; 150.87(s, \mathrm{C}(11)) ; 21.12(q, \mathrm{Me}-\mathrm{C}(11)) ; 24.48(q, \mathrm{C}(12)) ;$ arom. $\mathrm{C}: 163.02(s, \mathrm{CO}), 133.14$ $(s, \mathrm{C}(1)) ; 130.09(d, \mathrm{C}(2)) ; 134.78(s, \mathrm{C}(3)) ; 132.89(d, \mathrm{C}(4)) ; 129.95(d, \mathrm{C}(5)) ; \mathrm{C}(6)$ submerged by the solvent signals. MS: 428 (0.1), 426 (0.3), $390(1.4), 330(3.8), 288$ (11.2), 271 (10.8), 270 (8.4), 229 (9.4), 228 (26.9), 213 (5.2), 199 (7.0), $158(2.1), 156$ (7.0), 141 (16.5), 139 (47.8), 43 (100).
(4S,6S,1E)-1,4,6-Triacetoxy-3- [(Z)-acetoxymethylidene $/-7,11$-dimethyldodeca-1,10-dien-8-yn-7-yl 3Chlorobenzoate ( 9 b ; configuration at $\mathrm{C}(6)$ tentative): ${ }^{1} \mathrm{H}-\mathrm{NMR} \quad\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): 7.97 \quad(d d, J(1,2)=12.9, J(1$, $\mathrm{OCH}=\mathrm{C}(3))=0.6, \quad \mathrm{H}-\mathrm{C}(1)) ; \quad 1.57 \quad(s, \quad \mathrm{AcO}-\mathrm{C}(1)$ or $A c \mathrm{OCH}=\mathrm{C}(3)) ; \quad 5.81 \quad(d d, \quad J(2,1)=12.9, \quad J(2$, $\mathrm{OCH}=\mathrm{C}(3) \mathrm{j}=0.6, \mathrm{H}-\mathrm{C}(2)) ; 7.50(d d, J(\mathrm{OCH}=\mathrm{C}(3), 2)=0.9, J(\mathrm{OCH}=\mathrm{C}(3), 1)=0.6, \mathrm{OCH}=\mathrm{C}(3)) ; 1.70(s$, $A c \mathrm{OCH}=\mathrm{C}(3)$ or $\mathrm{AcO}-\mathrm{C}(1)) ; 6.39$ (br. $d d, J(4,5 \alpha)=9.6, J(4,5 \beta)=5.1, J(4,2)$ small, $\mathrm{H}-\mathrm{C}(4)) ; 1.75(s, \mathrm{AcO}-\mathrm{C}(4)$ or $\mathrm{AcO}-\mathrm{C}(6)) ; 2.83\left(d d d, \quad J_{\mathrm{gem}}=14.1, J(5 \alpha, 4)=9.6, J(5 \alpha, 6)=1.5, \quad \mathrm{H}_{\alpha}-\mathrm{C}(5)\right) ; 2.39$ (ddd, $J_{\text {gem }}=14.1$, $\left.J(5 \beta, 4)=5.1, J(5 \beta, 6)=10.2, \mathrm{H}_{\beta}-\mathrm{C}(5)\right) ; 5.75(d d, J(6,5 \alpha)=1.5, J(6,5 \beta)=10.2, \mathrm{H}-\mathrm{C}(6)) ; 1.76(s, \mathrm{AcO}-\mathrm{C}(6)$ or $\mathrm{AcO}-\mathrm{C}(4)) ; 1.86(s, \mathrm{Me}-\mathrm{C}(7)) ; 5.25(4 q, J(10,12)=1.5, J(10, \mathrm{Me}-\mathrm{C}(11))=1.2, \mathrm{H}-\mathrm{C}(10)) ; 1.84(d q$, $J(\mathrm{Me}-\mathrm{C}(11), 10)=1.2, J(\mathrm{Me}-\mathrm{C}(11), 12)=0.6, \mathrm{Me}-\mathrm{C}(11)) ; 1.40(d q, J(12,10)=1.5, J(12, \mathrm{Me}-\mathrm{C}(11))=0.6$, $\mathrm{Me}(12))$; arom. H: $8.14(d d d, J(2,4)=J(2,6)=1.8, J(2,5)=0.6, \mathrm{H}-\mathrm{C}(2)) ; 7.00(d d d, J(4,5)=7.8, J(4,2)=1.8$, $J(4,6)=1.2, \quad \mathrm{H}-\mathrm{C}(4)) ; 6.71 \quad(d d d, \quad J(5,4)=J(5,2)=7.8, \quad J(5,2)=0.6, \quad \mathrm{H}-\mathrm{C}(5)) ; 7.87 \quad(d d d, \quad J(6,5)=7.8$, $J(6,2)=1.8, \quad J(6,4)=1.2, \quad \mathrm{H}-\mathrm{C}(6)) .{ }^{13} \mathrm{C}-\mathrm{NMR} \quad\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): 137.57 \quad(d, \quad \mathrm{C}(1)) ; 19.94 \quad\left(q, \quad \mathrm{MeCO} \mathrm{CO}_{2} \mathrm{C}(1)\right.$ or $\left.\mathrm{Me} \mathrm{CO}_{2} \mathrm{CH}=\mathrm{C}(3)\right) ; 167.08$ ( $s, \mathrm{McCO}_{2} \mathrm{C}(1)$ or $\left.\mathrm{MeCO}_{2} \mathrm{C}(3)\right) ; 109.48(d, \mathrm{C}(2)) ; 117.50(s, \mathrm{C}(3)) ; 136.56$ $(d, \mathrm{OCH}=\mathrm{C}(3)) ; 19.98\left(q, \mathrm{MeCO} 2 \mathrm{CH}=\mathrm{C}(3)\right.$ or $\left.\mathrm{MeCO}_{2} \mathrm{C}(1)\right) ; 166.50\left(s, \mathrm{MeCO}_{2} \mathrm{CH}=\mathrm{C}(3)\right.$ or $\left.\mathrm{MeCO} 2 \mathrm{C}(1)\right) ; 67.17$ (d, C(4)); $20.47\left(q, \mathrm{MeCO}_{2} \mathrm{C}(4)\right.$ or $\left.\mathrm{MeCO}_{2} \mathrm{C}(6)\right) ; 169.53\left(s, \mathrm{MeCO}_{2} \mathrm{C}(4)\right.$ or $\left.\mathrm{MeCO}_{2} \mathrm{C}(6)\right) ; 34.20(t, \mathrm{C}(5)$ ); 73.37 (d, $\mathrm{C}(6)) ; 20.66\left(q, \mathrm{Me} \mathrm{CO}_{2} \mathrm{C}(6)\right.$ or $\left.\mathrm{Me} \mathrm{CO}_{2} \mathrm{C}(4)\right) ; 169.04\left(s, \mathrm{MeCO}_{2} \mathrm{C}(6)\right.$ or $\left.\mathrm{MeCO}_{2} \mathrm{C}(4)\right) ; 78.29(s, \mathrm{C}(7)) ; 21.53$ ( $q, \mathrm{Me}-\mathrm{C}(7)$ ); $88.98(\mathrm{~s}, \mathrm{C}(8)) ; 86.75(\mathrm{~s}, \mathrm{C}(9)) ; 104.88(\mathrm{~d}, \mathrm{C}(10)) ; 150.71(s, \mathrm{C}(11)) ; 21.17(q, \mathrm{Me}-\mathrm{C}(11)) ; 24.51$ ( $q, \mathrm{C}(12)$ ); arom. $\mathrm{C}: 163.02(s, \mathrm{CO}), 133.10(s, \mathrm{C}(1)) ; 130.07(d, \mathrm{C}(2)) ; 134.74(s, \mathrm{C}(3)) ; 132.84(d, \mathrm{C}(4)) ; 129.84$ (d, C(5)); C(6) submerged by solvent signals. MS: $449\left(0.3,\left[M-C l C_{6} \mathrm{H}_{4} \mathrm{CO}\right]^{+}\right), 428(0.3), 427(0.4), 426(0.4), 330$ (5.3), 288 (16.2), 271 (17.3), 270 (15.3), 229 (14.5), 228 (25.7), 213 (8.5), 139 (11.4), 158 (4.8), 156 (11.3), 141 (21.0), 139 (60.2), 43 (100).

## REFERENCES

[1] V. J. Paul, W. Fenical, Marine Ecol. - Progress Ser. 1986, 34, 157; V.J. Paul, W. Fenical, in 'Bioorganic Marine Chemistry', Ed. P.J. Scheuer, Springer-Verlag, Berlin, 1987, Vol. 1, pp. 1-30.
[2] F. Pietra ‘A Secret World. Natural Products of Marine Life’, Birkhäuser Verlag, Basel, 1990, p. 40-41, $54-55$.
[3] A. Meinesz, B. Hesse, Oceanologica Acta 1991, 14, 4, 415; C.-F. Boudouresque, A. Meinesz, M. Verlaque, M. Knoepffler-Peguy, Cryptogamie Algologie 1992, 13/2, 144.
[4] A. Gucrriero, A. Meinesz, M. D’Ambrosio, F. Pietra, Helv. Chim. Acta 1992, 75, 689.
[5] F. Dini, A. Tomei, A. Guerriero, F. Pietra, F, Marchetti, A. Giannotti, S. Senesi, submitted to Naturwissenschaften.
[6] V. Amico, G. Oriente, M. Piattelli, C. Tringali, E. Fattorusso, S. Magno, L. Mayol, Tetrahedron Lett. 1978, 38, 3593.
[7] J. A. Dale, D. L. Dull, H.S. Mosher, J. Org. Chem. 1969, 22, 4081.
[8] I. Ohtani, T. Kusumi, Y. Kashman, H. Kakisawa, J. Am. Chem. Soc. 1991, 113, 4092; G. Guella, I. Mancini, G. Chiasera, F. Pietra, Helv. Chint. Acta 1992, 75, 303; G. Guella, I. Mancini, G. Chiasera, F. Pietra, ibid. 1992, 75, 310.
[9] E. B. Sherr, B. F. Sherr, Limnology Oceanology 1988, 33, 1225.
[10] National Committee for Clinical Laboratory Standards, Approved Standard M2-A2, 'Performance Standards for Antimicrobial Disk Susceptibility Tests' 2nd edn., Villanova, PA, 1979.
[11] B. Austin 'Marine Microbiology', Cambridge University Press, Cambridge, 1988, p. 63-66.
[12] J. Bidwell, S. Spotte, 'Artificial Seawater', Jones and Barlett, Boston, 1985.


[^0]:    ${ }^{1}$ ) Along with other Caulerpales [1] and a few red seaweeds [2].

[^1]:    ${ }^{2}$ ) This synthetic sample of 2 was identical in every respect (including $[\alpha]_{D}$ and biological activities) to the $1: 1$ diastereoisomer mixture $\mathbf{2}$ previously isolated from C. taxifolia [4].

[^2]:    ${ }^{3}$ ) Evidence for a diastereoisomer mixture of bis-epoxides 7 rests on ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra in $\mathrm{C}_{6} \mathrm{D}_{6}$, which, though being of the same type as for epoxides 2 and 6, are characterized by special features. Thus, signals for Me groups at olefinic bonds are absent, while $s$ 's are observed at $\delta 0.88-1.42$ for Me groups and both $s$ 's and $d d$ 's at $\delta 2.90-2.92$ and 3.17-3.27, respectively, for epoxide protons.

[^3]:    ${ }^{4}$ ) The high reactivity of epoxides $\mathbf{6 b}$ and 6 a must also be responsible for the incorporation of $3-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CO}_{3} \mathrm{H}$ during the $\mathrm{NaHCO}_{3}$-buffered epoxidation of caulerpenyne, yielding hydroxy-esters $\mathbf{8 a}$ and $\mathbf{8 b}$ (Scheme). Their gross structures are fully supported by NMR and MS data (Table land Exper. Pari). Acetylation to 9a and $\mathbf{9 b}$, respectively, establishes that the free OH group in $\mathbf{8 a}$ and $\mathbf{8 b}$ is at $\mathrm{C}(6)$. However, the configuration at $\mathbf{C}(7)$ could not be assigned, and that at $C(6)$ is only tentative. Cleavage of epoxides 6 to the 6 -hydroxy 7 -benzoates 8 is compatible with epoxide opening via the more stable carbonium ion at the tertiary $\mathrm{C}(7)$, in spite of the electron-withdrawing effect of the acetylenic group. Probably only partial carbonium-ion formation or a tight ion pair occurs to account for the generation of only two (or two major) diastereoisomers.

